Best Practice Guide on the Control of Arsenic in Drinking Water.

Saved in:
Bibliographic Details
Author / Creator: Bhattacharya, Prosun.
Other Authors / Creators:Polya, David.
Jovanovic, Dragana.
Format: eBook Electronic
Language:English
Imprint: London : IWA Publishing, 2017.
Series:Best Practice Guides on Metals and Related Substances in Drinking Water Ser.
Subjects:
Local Note:Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Online Access:Click to View
LEADER 11248nam a22005053i 4500
001 EBC4921728
003 MiAaPQ
005 20220528134909.0
006 m o d |
007 cr cnu||||||||
008 220528s2017 xx o ||||0 eng d
020 |a 9781780404929  |q (electronic bk.) 
020 |z 9781843393856 
035 |a (MiAaPQ)EBC4921728 
035 |a (Au-PeEL)EBL4921728 
035 |a (CaPaEBR)ebr11415766 
035 |a (OCoLC)995567974 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a TD365.B478 2017 
082 0 |a 628.16 
100 1 |a Bhattacharya, Prosun. 
245 1 0 |a Best Practice Guide on the Control of Arsenic in Drinking Water. 
264 1 |a London :  |b IWA Publishing,  |c 2017. 
264 4 |c ©2017. 
300 |a 1 online resource (308 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Best Practice Guides on Metals and Related Substances in Drinking Water Ser. 
505 0 |a Cover -- Copyright -- Contents -- About the Editors -- Authors -- Acknowledgements -- Acronyms -- Definitions -- References -- About this Best Practice Guide -- Disclaimer -- Foreword -- Dedication -- References -- Executive summary -- References -- Chapter 1: Arsenic in drinking water: sources &amp -- human exposure -- 1.1 Introduction -- 1.2 Arsenic in Groundwater Sources -- 1.2.1 Origin of high arsenic groundwaters -- 1.2.1.1 Arsenic-bearing source materials -- 1.2.1.1.1 Arsenic in rocks, minerals, soils and sediments -- 1.2.1.1.2 Anthropogenic sources of arsenic -- 1.2.1.2 Arsenic contamination &amp -- mobilization processes -- 1.2.1.3 Slow arsenic removal processes -- 1.2.2 Nature of high arsenic groundwaters -- 1.2.3 Distribution of high arsenic groundwaters -- 1.3 Arsenic in Surface Water Sources -- 1.4 Global Exposure Scenario -- 1.4.1 Exposure routes -- 1.4.2 Exposure and bioavailability -- 1.5 Exposure through Drinking Water -- 1.5.1 Global distribution of exposure to high arsenic (&gt -- 10 μg/L) drinking water -- 1.5.2 Drinking water intake rates -- 1.6 Exposure through the Food Chain -- 1.7 Importance of Non-Arsenic Parameters -- 1.8 Conclusions -- 1.9 Acknowledgements -- 1.10 References -- Chapter 2: Public health effects of arsenic exposure -- 2.1 Arsenic Exposure and Health Effects -- 2.2 Non-Carcinogenic Health Effects of Low-Level Arsenic Exposure -- 2.3 Carcinogenic Health Effects of Low-Level Arsenic Exposure -- 2.4 References -- Chapter 3: Health surveillance and biomonitoring -- 3.1 Introduction -- 3.2 Biomarkers of Arsenic Exposure -- 3.3 References -- Chapter 4: Regulatory aspects of arsenic in drinking water -- 4.1 History of Arsenic Regulation -- 4.2 Principles of Guideline Value Derivation &amp -- The Case of Arsenic -- 4.3 Derivation of the WHO Guideline Value for Arsenic -- 4.4 Derivation of US EPA Arsenic Regulation. 
505 8 |a 4.5 Uncertainties and Discussions in Health Risk Assessment of Arsenic -- 4.6 Derogations, Temporarily Limited Values, Health Advisories -- 4.7 Regulatory Prospects -- 4.8 References -- Chapter 5: Sampling and analysis for monitoring arsenic in drinking water -- 5.1 Introduction -- 5.2 Data Requirements -- 5.2.1 Overall aims of monitoring -- 5.2.2 Representativeness -- 5.2.2.1 Speciation -- 5.2.2.2 Spatial and temporal variations -- 5.2.2.3 Contamination during sampling -- 5.2.2.4 Preservation -- 5.2.3 Data &amp -- data quality objectives (DQOs) -- 5.2.3.1 Field site related parameters -- 5.2.3.2 Analytes -- 5.2.3.3 DQOs - required chemical measurement performance characteristics -- 5.3 Sampling Strategies/Design -- 5.4 Sampling/Preservation Protocols -- 5.5 Analytical Methods -- 5.5.1 Analytical instrumentation -- 5.5.1.1 Total arsenic -- 5.5.1.2 Arsenic speciation -- 5.5.1.2.1 Colorimetry and UV-Visible spectrophotometry -- 5.5.1.2.2 Ion exchange - solid phase extraction (SPE) -- 5.5.1.2.3 Biosensors -- 5.5.2 Analytical &amp -- data reduction protocols -- 5.5.2.1 Control samples &amp -- standards -- 5.5.2.2 Order of Analysis - randomisation -- 5.5.2.3 Data reduction - calibration models -- 5.6 Total Quality Management (TQM), QA &amp -- QC -- 5.6.1 Total quality management -- 5.7 Conclusion -- 5.8 Acknowledgements -- 5.9 References -- Chapter 6: Selection of arsenic remediation strategies in the context of Water Safety Plans -- 6.1 Introduction -- 6.2 Water Safety Plans -- 6.3 Variations in Water Safety Plan Approaches -- 6.4 Benefits in the Uptake of Water Safety Plan Approaches -- 6.5 Challenges in the Uptake of Water Safety Plan Approaches -- 6.5.1 Community-identified challenges in developing regions (Bangladesh Case Study) -- 6.5.2 Challenges regarding human aspects and community readiness. 
505 8 |a 6.5.3 Challenges regarding leadership engagement and buy-in -- 6.5.4 Challenges regarding linkages with business-based risk models -- 6.6 Selection of Remediation Strategies In-Practice -- 6.7 Additional Considerations for Remediation Decision-Making -- 6.8 Conclusions -- 6.9 Acknowledgements -- 6.10 References -- Chapter 7: Arsenic remediation of drinking water: an overview -- 7.1 Introduction -- 7.2 Aqueous Chemistry of Arsenic -- 7.3 Arsenic Removal Technologies -- 7.3.1 Precipitation -- 7.3.2 Adsorption and ion exchange -- 7.3.3 Membrane filtration -- 7.3.4 Oxidation -- 7.3.5 Bioremediation: biosorption and biological oxidation -- 7.3.6 Alternate sources/source switching -- 7.4 Concluding Remarks -- 7.5 Acknowledgements -- 7.6 References -- Chapter 8: Sustainable arsenic mitigation - from field trials to implementation for control of arsenic in drinking water supplies in Bangladesh -- 8.1 Introduction -- 8.2 The SASMIT Action Research and Implementation -- 8.2.1 Assessing available safe water options -- 8.2.2 Perception of local tubewell drillers and practice for tubewell installation -- 8.2.3 Two innovations for installation of safe tubewells -- 8.2.3.1 Sediment Color Tool for targeting As-safe aquifers at shallow depths -- 8.2.3.2 A simplified tool for the local drillers -- 8.2.3.3 Intermediate Deep Tubewells (IDTW) - Newly explored source of safe drinking water -- 8.2.4 Integration of technical and socioeconomic aspects for optimisation of safe water access -- 8.2.5 Capacity building of the local drillers -- 8.3 Compliance with the Policy Regime of Sustainable Arsenic Mitigation in Bangladesh -- 8.4 Conclusions and Future Outlook -- 8.5 Acknowledgements -- 8.6 References -- Chapter 9: Community awareness and engagement for arsenic management -- 9.1 Introduction and Background -- 9.2 The Rationale for Management of the Community. 
505 8 |a 9.3 Barriers for Management of the Community -- 9.4 Towards Participatory Methods -- 9.5 Management with the Community -- 9.6 Summary: Community Engagement for Arsenic Management -- 9.7 References -- Chapter 10: Valuing the damage of arsenic consumption: economic non-market valuation methods -- 10.1 Introduction -- 10.2 Cost Benefit Analysis, WTP, Economic Value &amp -- QALYs -- 10.3 Valuation Methods -- 10.3.1 Value of a statistical life (VSL) -- 10.3.2 Human capital approach -- 10.3.3 Revealed preference methods -- 10.3.3.1 Cost of illness -- 10.3.3.2 Averting expenditures -- 10.3.3.3 Hedonic pricing -- 10.3.4 Stated preference -- 10.3.4.1 Contingent valuation -- 10.3.4.2 Choice experiments -- 10.4 Benefits Transfer -- 10.5 US EPA Cost Benefit Analysis -- 10.6 Critical Issues with Cost Benefit Analysis -- 10.7 Conclusions -- 10.8 Acknowledgements -- 10.9 References -- Chapter A1: Arsenic hazard and associated health risks: New England, USA aquifers -- A1.1 Introduction -- A1.1.1 Drinking water use in New England -- A1.2 Arsenic Hazard in New England Groundwater -- A1.2.1 Arsenic in crystalline bedrock aquifers -- A1.2.2 Controls on occurrence -- A1.3 Human Health Risks -- A1.4 References -- Chapter A2: Geostatistical modelling of arsenic hazard in groundwater -- A2.1 Introduction -- A2.2 Input Data -- A2.2.1 Auxiliary raster-based data layers -- A2.2.2 Calibration dataset -- A2.3 Modelling Procedures -- A2.3.1 Global scale arsenic hazard maps (Amini et al. 2008) -- A2.3.2 Regional scale modelling of arsenic hazard -- A2.3.3 Small-scale arsenic hazard modelling in three dimensions -- A2.4 Opportunities and Limitations -- A2.5 Acknowledgements -- A2.6 References -- Chapter A3: Estimating the population exposed to arsenic from groundwater-sourced private drinking water supplies in Cornwall, UK -- A3.1 Introduction -- A3.2 Methods. 
505 8 |a A3.2.1 Recruitment of households with PWS -- A3.2.2 Estimating the number of PWS and residents served in Cornwall -- A3.2.3 Estimating the population exposed to arsenic in PWS -- A3.3 Results -- A3.3.1 Estimating the number of PWS residents included in the survey -- A3.3.2 Estimated Cornish population using PWS, from official records -- A3.3.3 Estimating the population exposure distribution to drinking water arsenic -- A3.4 Discussion -- A3.4.1 Guideline values, standards and health effects of arsenic in drinking water -- A3.4.2 Public health advice given to households with exceedances -- A3.4.3 Evaluating arsenic PCV exceedances -- A3.4.4 Representativeness of samples and caveats -- A3.5 Conclusions -- A3.6 Acknowledgements -- A3.7 References -- Chapter A4: Hair arsenic as a reliable biomarker of exposure to arsenic in drinking water -- A4.1 Introduction -- A4.2 Key Results -- A4.3 Conclusions -- A4.4 References -- Chapter A5: Automated on-site arsenic monitoring -- A5.1 Introduction -- A5.1.1 Arsenic problem and regulations -- A5.1.2 Arsenic remediation technologies -- A5.1.3 Monitoring methods -- A5.2 Automated Arsenic Analysis using Voltammetry -- A5.3 Case Study: Safeguard Analyzer to Regulated Chemical Dosage for Water Treatment, Chaparral Arizona -- A5.4 References -- Chapter A6: ARSOlux - the arsenic biosensor -- A6.1 Introduction -- A6.1.1 Widely used arsenic detection technologies -- A6.2 The ARSOlux Biosensor - A Biologic Tool for Arsenic Detection -- A6.2.1 Principles -- ARSOlux Manual -- A6.2.2 Working range -- A6.2.3 Performance and optimization -- A6.3 ARSOlux as a New Screening Tool in Regular Water Quality Monitoring -- A6.4 Outlook -- A6.5 References -- Chapter A7: Centralized arsenic removal from drinking water in the United States -- A7.1 Introduction -- A7.2 Arsenic in Drinking Water -- A7.2.1 Aqueous chemistry of arsenic. 
505 8 |a A7.2.2 Arsenic removal technologies. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
650 0 |a Water quality management. 
655 4 |a Electronic books. 
700 1 |a Polya, David. 
700 1 |a Jovanovic, Dragana. 
776 0 8 |i Print version:  |a Bhattacharya, Prosun  |t Best Practice Guide on the Control of Arsenic in Drinking Water  |d London : IWA Publishing,c2017  |z 9781843393856 
797 2 |a ProQuest (Firm) 
830 0 |a Best Practice Guides on Metals and Related Substances in Drinking Water Ser. 
856 4 0 |u https://ebookcentral.proquest.com/lib/well/detail.action?docID=4921728  |z Click to View