Modern Trends In Chemical Reaction Dynamics - Part I : Experiment and Theory.

The field of chemical reaction dynamics has made tremendous progressduring the last decade or so. This is due largely to the developmentof many new, state-of-the-art experimental and theoretical techniquesduring that period. It is beneficial to present these advances, boththeoretical and experimenta...

Full description

Saved in:
Bibliographic Details
Author / Creator: Liu, Kopin.
Other Authors / Creators:Yang, Xueming.
Format: eBook Electronic
Language:English
Edition:14th ed.
Imprint: Singapore : World Scientific Publishing Company, 2004.
Series:Advanced Series In Physical Chemistry
Subjects:
Local Note:Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Online Access:Click to View
Table of Contents:
  • Intro
  • Introduction
  • Preface
  • CONTENTS
  • 1. Doppler-Selected Time-of-Flight Technique: A Versatile Three-Dimensional Velocity Mapping Approach Shih-Huang Lee and Kopin Liu
  • 1. Introduction
  • 2. Doppler-Selected Time-of-Flight Technique
  • 2.1. Basic Concept
  • 2.2. Apparatus
  • 2.2.1. Molecular Beam Source
  • 2.2.2. Laser Ionization
  • 2.2.3. TOF Spectrometer
  • 2.3. Data Analysis
  • 2.3.1. Crossed Beam Scattering
  • 2.3.2. Photodissociation Process
  • 2.3.3. Density-to-Flux Transformation
  • 3. Applications
  • 3.1. Photodissociation Dynamics
  • 3.1.1. C2H2 + hv (121.6 nm) C2H + H
  • 3.1.2. H2S + hv (121.6nm) SH + H
  • 3.2. Crossed-Beam Reaction Dynamics
  • 3.2.1. S(1D) + H2 SH + H
  • 3.2.2. F(2P) + HD HF + D
  • 4. Outlook
  • Acknowledgments
  • References
  • 2. The Effect of Reactive Resonance on Collision Observables Sheng Der Chao and Rex T. Skodje
  • 1. Introduction
  • 2. Theoretical Methods for Resonance Phenomena
  • 2.1. Integral Cross-Sections
  • 2.2. Time Delay
  • 2.3. Exponential Decay
  • 2.4. Angular Product Distributions
  • 2.5. Product Rovibrational Branching Ratios
  • 3. Three Examples of Reactive Resonance
  • 3.1. F + HD HF + D
  • 3.2. F + H2
  • 3.3. H + HD
  • 4. Conclusions
  • Acknowledgments
  • Note Added in Proof
  • References
  • 3. State-to-State Dynamics of Elementary Chemical Reactions Using Rydberg H-Atom Translational Spectorscopy Xueming Yang
  • 1. Introduction
  • 2. The H-atom Rydberg "Tagging" TOF Method
  • 3. Unimolecular Dissociation of H2O
  • 3.1. H2O on the A1B1 Surface: A Direct Dissociation
  • 3.2. H2O on the B1A1 Surface: Dissociation through Conical Intersections
  • 3.2.1. OH Product Quantum State Distributions
  • 3.2.2. Rovibrational Dependent Anisotropy Parameters
  • 3.2.3. Effect of Parent Rotational Excitation on the OH(A) Product
  • 3.2.4. Accurate Dissociation Energy of H2O:D00.
  • 3.2.5. Population Alternations and Quantum Interference
  • 3.2.6. Extremely Rotationally Excited OH from HOD Dissociation through Conical Intersection
  • 3.2.7. The Single N Propensity in the HOD + hv OD + H Dissociation Process
  • 4. The O(1D) + H2 Reaction: From Insertion to Abstraction
  • 4.1. Reaction at 1.3 kcal/mol: Barrierless Insertion Reaction
  • 4.2. Effect of a Single Quantum Rotational Excitation
  • 4.3. Experimental Evidence for a Collinear Abstraction Mechanism in O(1D) + D2 OD + D
  • 4.4. Quantum State Specific Dynamics for the O(1D) + HD OD + H Reaction: Isotope Effect
  • 5. Quantum-State Resolved Dynamics in the H3 System: Probing Structures and Dynamics of the Quantized Transition States
  • 5.1. The H + HD Reaction at Ec = 0.498 eV and 1.200 eV
  • 5.2. Probing the Structures of Quantized Transition States in the H + D2 Reaction
  • 6. Concluding Remarks
  • Acknowledgments
  • References
  • 4. Multimass Ion Imaging - A New Experimental Method and Its Application in the Photodissociation of Small Aromatic Molecules Cheng-Liang Huang, Yuan T. Lee and Chi-Kung Ni
  • 1. Introduction
  • 2. New Experimental Method: Multimass Ion Imaging
  • 2.1. Overview
  • 2.2. Mass Spectrometer
  • 2.3. Mass Resolution and Mass Range
  • 2.4. Fragment Recoil Velocity Resolution
  • 2.5. Dissociation Rate
  • 3. Application in the Photodissociation of Small Aromatic Molecules
  • 3.1. Benzene
  • 3.2. Toluene
  • 3.3. Ethylbenzene and Propylbenzene
  • 4. Conclusions
  • Acknowledgments
  • References
  • 5. Reactions of Neutral Transition Metal Atoms with Small Molecules in the Gas Phase Jonathan J. Schroden and H. Floyd Davis
  • 1. Introduction
  • 1.1. Previous Theoretical Work
  • 1.2. Previous Experimental Work
  • 1.2.1. M + Oxygen-Containing Molecules
  • 1.2.2. M + Hydrocarbons
  • 2. Experimental Details
  • 2.1. Production of the Beams
  • 2.2. Detection.
  • 2.3. Sample Data: Y(a2D) + CH3OH
  • 3. Y(a2D) + Cyclopropane and Propene
  • 3.1. Yttrium + Cyclopropane: Ecoll = 18.5 kcal/mol
  • 3.2. Yttrium + Cyclopropane: Collision Energy Dependence
  • 3.3. Yttrium + Propene: Ecoll = 25.2 kcal/mol
  • 3.4. Yttrium + Propene: Collision Energy Dependence
  • 3.5. Non-Reactive Scattering in Cyclopropane and Propene Reactions
  • 3.6. Yttrium + Cyclopropane YC3H4 + H2
  • 3.7. YCH2 + C2H4 from the Cyclopropane Reaction
  • 3.8. YC3H4 + H2 and YH2 + C3H4 from the Propene Reaction
  • 3.9. YCH2 + C2H4 Formation from the Propene Reaction
  • 4. Y(a2D) + Four Butene Isomers
  • 4.1. Y + Butenes: Ecoll = 26.6 kcal/mol
  • 4.2. Y + Butenes: Ecoll = 11.0 kcal/mol
  • 4.3. Y + Butenes Reaction Mechanisms
  • 5. Conclusions
  • 6. Future Directions
  • 6.1. The Role of Vibrational Excitation in Transition Metal Reactivity
  • 6.2. Reaction Dynamics of Partially-Ligated Species
  • Acknowledgments
  • References
  • 6. Photodissociation Dynamics of Ozone in the Hartley Band Paul L. Houston
  • 1. Introduction
  • 2. Experimental Techniques
  • 2.1. The Singlet Channel
  • 2.2. The Triplet Channel
  • 3. Results and Discussion
  • 3.1. The Singlet Channel: O3 + hν O(1D2) + O2(1 g)
  • 3.1.1. O(1D2) Speed Distributions
  • 3.1.2. O(1D2) Angular Distributions
  • 3.1.3. O2(1 g) Angular Distributions
  • 3.2. The Triplet Channel: O3 + hν O(3P) + O2(3Σ)
  • 3.2.1. O(3P) Speed Distributions
  • 3.2.2. O(3P) Angular Distributions
  • 4. Conclusions and Remaining Questions
  • Acknowledgments
  • Note Added in Proof
  • References
  • 7. Crossed Molecular Beam Reactive Scattering: Towards Universal Product Detection by Soft Electron-Impact Ionization Piergiorgio Casavecchia, Giovanni Capozza and Enrico Segoloni
  • 1. Introduction
  • 2. Experimental Considerations
  • 2.1. "Hard" Electron-Impact Ionization
  • 2.2. "Soft" Photoionization by Synchrotron Radiation.
  • 2.3. "Soft" Electron-Impact Ionization by Low-Energy Electrons
  • 2.4. Mass Spectra
  • 2.5. Measurements of Product Angular and TOF Distributions
  • 2.6. Electron-Impact E.ciency Curves
  • 2.7. CMB Experiments with Variable Beam Crossing Angle
  • 3. Examples: O(3P) + Unsaturated Hydrocarbons
  • 3.1. O(3P) + C2H2
  • 3.1.1. Product Angular and TOF Distributions Using " Soft" EI Ionization
  • 3.1.2. Product Angular and TOF Distributions with Beam Crossing Angle = 135
  • 3.1.3. CMB Determination of the Branching Ratios
  • 3.2. O(3P) + C2H4
  • 3.2.1. Observation of all Product Channels
  • 4. Examples: C(3P) + Unsaturated Hydrocarbons
  • 4.1. C(3P) + C2H4
  • 4.1.1. Observation of the C-C Bond Fission Channel
  • 4.2. C(3P) + C2H2
  • 5. Conclusions and Future Prospects
  • Acknowledgments
  • References
  • 8. Interactions of Vibrationally-Excited Molecules at Surfaces: A Probe for Electronically Nonadiabatic Effects in Heterogeneous Chemistry Alec M. Wodtke
  • 1. Introduction
  • 2. First Evidence of Born-Oppenheimer Breakdown
  • 3. Born-Oppenheimer Breakdown in Surface Reactions
  • 4. "Scattering the Transition State" from a Metal Surface
  • 5. Measurements of Chemicurrent
  • 6. Conclusions
  • Acknowledgments and Dedications
  • References
  • 9. First Principles Quantum Dynamical Study of Four-Atom Reactions Dong H. Zhang, Minghui Yang, Soo-Y. Lee and Michael A. Collins
  • 1. Introduction
  • 2. Theory
  • 2.1. Hamiltonian for AB + CD Reaction and Basis Set Expansion
  • 2.2. Wavepacket Propagation for AB + CD Reaction
  • 2.3. Hamiltonian for ABC + D Reaction and Basis Set Expansion
  • 2.4. Wavepacket Propagation for ABC + D Reaction
  • 2.5. Reaction Probability, Cross-Section, and Rate Constant
  • 3. Ab Initio Potential Energy Surfaces
  • 3.1. The PES Construction Method
  • 3.2. Proof and Improvement of Accuracy
  • 3.3. Computational Considerations.
  • 4. Results for Some AB + CD and ABC + D Reactions
  • 4.1. Reactions of H2 + OH, HD + OH, and D2 + OH
  • 4.2. Reactions of H + H2O, H + D2O
  • 4.3. Photoelectron and Photodetachment Spectroscopy of H3O-
  • 5. Conclusions
  • Acknowledgments
  • References
  • 10. Photodissociation Dynamics of Free Radicals Jingsong Zhang
  • 1. Introduction
  • 2. Experimental Approaches
  • 2.1. Generation of Free Radical Beams
  • 2.1.1. Pyrolysis
  • 2.1.2. Photolysis
  • 2.1.3. Electric Discharge
  • 2.1.4. Negative Ion Photodetachment
  • 2.2. Detection of Free Radicals
  • 2.3. Experimental Techniques of Photodissociation Dynamics
  • 3. Photodissociation of Free Radicals
  • 3.1. Diatomic Radicals
  • 3.1.1. OH and OD
  • 3.1.2. ClO and BrO
  • 3.2. Alkyl Radicals
  • 3.2.1. Methyl (CH3)
  • 3.2.2. Chloromethyl (CH2Cl)
  • 3.2.3. Ethyl (C2H5)
  • 3.3. Unsaturated Aliphatic Radicals
  • 3.3.1. Vinyl (C2H3)
  • 3.3.2. Propargyl (C3H3)
  • 3.3.3. The C3H5 System: Allyl, 1-Propenyl, and 2-Propenyl
  • 3.4. Alkoxy Radicals
  • 3.4.1. Methoxy (CH3O) and the Related Systems, Thiomethoxy (CH3S) and Hydroxymethyl (CH2OH)
  • 3.4.2. Ethoxy (CH3CH2O)
  • 3.4.3. Vinoxy (CH2CHO)
  • 3.4.4. Cyclic Alkoxy
  • 3.5. Others
  • 4. Conclusions
  • Acknowledgments
  • References
  • Index.