|
|
|
|
LEADER |
11468nam a22004933i 4500 |
001 |
EBC5502855 |
003 |
MiAaPQ |
005 |
20220528134918.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
220528s2018 xx o ||||0 eng d |
020 |
|
|
|a 9781119275756
|q (electronic bk.)
|
020 |
|
|
|z 9781119275787
|
035 |
|
|
|a (MiAaPQ)EBC5502855
|
035 |
|
|
|a (Au-PeEL)EBL5502855
|
035 |
|
|
|a (OCoLC)1051139519
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
050 |
|
4 |
|a TK7871.99.M44 .R673 2018
|
082 |
0 |
|
|a 621.3815/9
|
100 |
1 |
|
|a de la Rosa, José M.
|
245 |
1 |
0 |
|a Sigma-Delta Converters.
|
250 |
|
|
|a 2nd ed.
|
264 |
|
1 |
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 2018.
|
264 |
|
4 |
|c ©2019.
|
300 |
|
|
|a 1 online resource (566 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a IEEE Press Ser.
|
505 |
0 |
|
|a Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgements -- List of Abbreviations -- Chapter 1 Introduction to ΣΔ Modulators: Fundamentals, Basic Architecture and Performance Metrics -- 1.1 Basics of Analog‐to‐Digital Conversion -- 1.1.1 Sampling -- 1.1.2 Quantization -- 1.1.3 Quantization White Noise Model -- 1.1.4 Noise Shaping -- 1.2 Sigma‐Delta Modulation -- 1.2.1 From Noise‐shaped Systems to ΣΔ Modulators -- 1.2.2 Performance Metrics of ΣΔMs -- 1.3 The First‐order ΣΔ Modulator -- 1.4 Performance Enhancement and Taxonomy of ΣΔMs -- 1.4.1 ΣΔM System‐level Design Parameters and Strategies -- 1.4.2 Classification of ΣΔMs -- 1.5 Putting All The Pieces Together: From ΣΔMs to ΣΔ ADCs -- 1.5.1 Some Words about ΣΔ Decimators -- 1.6 ΣΔ DACs -- 1.6.1 System Design Trade‐offs and Signal Processing in ΣΔ DACs -- 1.6.2 Implementation of Digital ΣΔMs used in DACs -- 1.7 Summary -- 1.7 References -- Chapter 2 Taxonomy of ΣΔ Architectures -- 2.1 Second‐order ΣΔ Modulators -- 2.1.1 Alternative Representations of Second‐order ΣΔMs -- 2.1.2 Second‐Order ΣΔM with Unity STF -- 2.2 High‐order Single‐loop ΣΔMs -- 2.3 Cascade ΣΔ Modulators -- 2.3.1 SMASH ΣΔM Architectures -- 2.4 Multi‐bit ΣΔ Modulators -- 2.4.1 Influence of Multi‐bit DAC Errors -- 2.4.2 Dynamic Element Matching Techniques -- 2.4.3 Dual Quantization -- 2.5 Band‐pass ΣΔ Modulators -- 2.5.1 Quadrature BP‐ΣΔMs -- 2.5.2 The z→−z2 LP-BP Transformation -- 2.5.3 BP‐ΣΔMs with Optimized NTF -- 2.5.4 Time‐interleaved and Polyphase BP‐ΣΔMs -- 2.6 Continuous‐time ΣΔ Modulators: Architecture and Basic Concepts -- 2.6.1 An Intuitive Analysis of CT‐ΣΔMs -- 2.6.2 Some Words about Alias Rejection in CT‐ΣΔMs -- 2.7 DT-CT Transformation of ΣΔMs -- 2.7.1 The Impulse‐invariant Transformation -- 2.7.2 DT-CT Transformation of a Second‐order ΣΔM -- 2.8 Direct Synthesis of CT‐ΣΔMs -- 2.9 Summary.
|
505 |
8 |
|
|a References -- Chapter 3 Circuit Errors in Switched‐capacitor ΣΔ Modulators -- 3.1 Overview of Nonidealities in Switched‐capacitor ΣΔ Modulators -- 3.2 Finite Amplifier Gain in SC‐ΣΔMs -- 3.3 Capacitor Mismatch in SC‐ΣΔMs -- 3.4 Integrator Settling Error in SC‐ΣΔMs -- 3.4.1 Behavioral Model for the Integrator Settling -- 3.4.2 Linear Effect of Finite Amplifier Gain-Bandwidth Product -- 3.4.3 Nonlinear Effect of Finite Amplifier Slew Rate -- 3.4.4 Effect of Finite Switch On‐resistance -- 3.5 Circuit Noise in SC‐ΣΔMs -- 3.6 Clock Jitter in SC‐ΣΔMs -- 3.7 Sources of Distortion in SC‐ΣΔMs -- 3.7.1 Nonlinear Amplifier Gain -- 3.7.2 Nonlinear Switch On‐Resistance -- 3.8 Case Study: High‐level Sizing of a ΣΔM -- 3.8.1 Ideal Modulator Performance -- 3.8.2 Noise Leakages -- 3.8.3 Circuit Noise -- 3.8.4 Settling Error -- 3.8.5 Overall High‐Level Sizing and Noise Budget -- 3.9 Summary -- References -- Chapter 4 Circuit Errors and Compensation Techniques in Continuous‐time ΣΔ Modulators -- 4.1 Overview of Nonidealities in Continuous‐time ΣΔ Modulators -- 4.2 CT Integrators and Resonators -- 4.3 Finite Amplifier Gain in CT‐ΣΔMs -- 4.4 Time‐constant Error in CT‐ΣΔMs -- 4.5 Finite Integrator Dynamics in CT‐ΣΔMs -- 4.5.1 Effect of Finite Gain-Bandwidth Product on CT‐ΣΔMs -- 4.5.2 Effect of Finite Slew Rate on CT‐ΣΔMs -- 4.6 Sources of Distortion in CT‐ΣΔMs -- 4.6.1 Nonlinearities in the Front‐end Integrator -- 4.6.2 Intersymbol Interference in the Feedback DAC -- 4.7 Circuit Noise in CT‐ΣΔMs -- 4.7.1 Noise Analysis Considering NRZ Feedback DACs -- 4.7.2 Noise Analysis Considering SC Feedback DACs -- 4.8 Clock Jitter in CT‐ΣΔMs -- 4.8.1 Jitter in Return‐to‐zero DACs -- 4.8.2 Jitter in Non‐return‐to‐zero DACs -- 4.8.3 Jitter in Switched‐capacitor DACs -- 4.8.4 Lingering Effect of Clock Jitter Error.
|
505 |
8 |
|
|a 4.8.5 Reducing the Effect of Clock Jitter with FIR and Sine‐shaped DACs -- 4.9 Excess Loop Delay in CT‐ΣΔMs -- 4.9.1 Intuitive Analysis of ELD -- 4.9.2 Analysis of ELD based on Impulse‐invariant DT‐CT Transformation -- 4.9.3 Alternative ELD Compensation Techniques -- 4.10 Quantizer Metastability in CT‐ΣΔMs -- 4.11 Summary -- References -- Chapter 5 Behavioral Modeling and High‐level Simulation -- 5.1 Systematic Design Methodology of ΣΔ Modulators -- 5.1.1 System Partitioning and Abstraction Levels -- 5.1.2 Sizing Process -- 5.2 Simulation Approaches for the High‐level Evaluation of ΣΔMs -- 5.2.1 Alternatives to Transistor‐level Simulation -- 5.2.2 Event‐driven Behavioral Simulation Technique -- 5.2.3 Programming Languages and Behavioral Modeling Platforms -- 5.3 Implementing ΣΔM Behavioral Models -- 5.3.1 From Circuit Analysis to Computational Algorithms -- 5.3.2 Time‐domain versus Frequency‐domain Behavioral Models -- 5.3.3 Implementing Time‐domain Behavioral Models in MATLAB -- 5.3.4 Building Time‐domain Behavioral Models as SIMULINK C‐MEX S‐functions -- 5.4 Efficient Behavioral Modeling of ΣΔM Building Blocks using C‐MEX S‐functions -- 5.4.1 Modeling of SC Integrators using S‐functions -- 5.4.2 Modeling of CT Integrators using S‐functions -- 5.4.3 Behavioral Modeling of Quantizers using S‐functions -- 5.5 SIMSIDES: A SIMULINK‐based Behavioral Simulator for ΣΔMs -- 5.5.1 Model Libraries Included in SIMSIDES -- 5.5.2 Structure of SIMSIDES and its User Interface -- 5.6 Using SIMSIDES for High‐level Sizing and Verification of ΣΔMs -- 5.6.1 SC Second‐order Single‐Bit ΣΔM -- 5.6.2 CT Fifth‐order Cascade 3‐2 Multi‐bit ΣΔM -- 5.7 Summary -- References -- Chapter 6 Automated Design and Optimization of ΣΔMs -- 6.1 Architecture Exploration and Selection: Schreier's Toolbox -- 6.1.1 Basic Functions of Schreier's Delta‐Sigma Toolbox.
|
505 |
8 |
|
|a 6.1.2 Synthesis of a Fourth‐order CRFF LP/BP SC‐ΣΔM with Tunable Notch -- 6.1.3 Synthesis of a Fourth‐order BP CT‐ΣΔM with Tunable Notch -- 6.2 Optimization‐based High‐level Synthesis of ΣΔ Modulators -- 6.2.1 Combining Behavioral Simulation and Optimization -- 6.2.2 Using Simulated Annealing as Optimization Engine -- 6.2.3 Combining SIMSIDES with MATLAB Optimizers -- 6.3 Lifting Method and Hardware Acceleration to Optimize CT‐ΣΔMs -- 6.3.1 Hardware Emulation of CT‐ΣΔMs on an FPGA -- 6.3.2 GPU‐accelerated Computing of CT‐ΣΔMs -- 6.4 Using Multi‐objective Evolutionary Algorithms to Optimize ΣΔMs -- 6.4.1 Combining MOEA with SIMSIDES -- 6.4.2 Applying MOEA and SIMSIDES to the Synthesis of CT‐ΣΔMs -- 6.5 Summary -- References -- Chapter 7 Electrical Design of ΣΔM: From Systems to Circuits -- 7.1 Macromodeling ΣΔMs -- 7.1.1 SC Integrator Macromodel -- 7.1.2 CT Integrator Macromodel -- 7.1.3 Nonlinear OTA Transconductor -- 7.1.4 Embedded Flash ADC Macromodel -- 7.1.5 Feedback DAC Macromodel -- 7.2 Examples of ΣΔM Macromodels -- 7.2.1 SC Second‐order Example -- 7.2.2 Second‐order Active‐RC ΣΔM -- 7.3 Including Noise in Transient Electrical Simulations of ΣΔMs -- 7.3.1 Generating and Injecting Noise Data Sequences in HSPICE -- 7.3.2 Analyzing the Impact of the Main Noise Sources in SC Integrators -- 7.3.3 Generating and Injecting Flicker Noise Sources in Electrical Simulations -- 7.3.4 Test Bench to Include Noise in the Simulation of ΣΔMs -- 7.4 Processing ΣΔM Output Results of Electrical Simulations -- 7.5 Summary -- References -- Chapter 8 Design Considerations of ΣΔM Subcircuits -- 8.1 Design Considerations of CMOS Switches -- 8.1.1 Trade‐Off Between Ron and the CMOS Switch Drain/Source Parasitic Capacitances -- 8.1.2 Characterizing the Nonlinear Behavior of Ron -- 8.1.3 Influence of Technology Downscaling on the Design of Switches.
|
505 |
8 |
|
|a 8.1.4 Evaluating Harmonic Distortion due to CMOS Switches -- 8.2 Design Considerations of Operational Amplifiers -- 8.2.1 Typical Amplifier Topologies -- 8.2.2 Common‐mode Feedback Networks -- 8.2.3 Characterization of the Amplifier in AC -- 8.2.4 Characterization of the Amplifier in DC -- 8.2.5 Characterization of the Amplifier Gain Nonlinearity -- 8.3 Design Considerations of Transconductors -- 8.3.1 Highly Linear Front‐end Transconductor -- 8.3.2 Loop‐filter Transconductors -- 8.3.3 Widely Programmable Transconductors -- 8.4 Design Considerations of Comparators -- 8.4.1 Regenerative Latch‐based Comparators -- 8.4.2 Design Guidelines of Comparators -- 8.4.3 Characterization of Offset and Hysteresis Based on the Input‐ramp Method -- 8.4.4 Characterization of Offset and Hysteresis Based on the Bisectional Method -- 8.4.5 Characterizing the Comparison Time -- 8.5 Design Considerations of Current‐Steering DACs -- 8.5.1 Fundamentals and Basic Concepts of CS DACs -- 8.5.2 Practical Realization of CS DACs -- 8.5.3 Current Cell Circuits, Error Limitations, and Design Criteria -- 8.5.4 CS 4‐bit DAC Example -- 8.6 Summary -- References -- Chapter 9 Practical Realization of ΣΔM: From Circuits to Chips -- 9.1 Auxiliary ΣΔM Building Blocks -- 9.1.1 Clock‐phase Generators -- 9.1.2 Generation of Common‐mode Voltage, Reference Voltage, and Bias Currents -- 9.1.3 Additional Digital Logic -- 9.2 Layout Design, Floorplanning, and Practical Issues -- 9.2.1 Layout Floorplanning -- 9.2.2 I/O Pad Ring -- 9.2.3 Importance of Layout Verification and Catastrophic Failure -- 9.3 Chip Package, Test PCB, and Experimental Setup -- 9.3.1 Bonding Diagram and Package -- 9.3.2 Test PCB -- 9.4 Experimental Test Set‐Up -- 9.4.1 Planning the Type and Number of Instruments Needed -- 9.4.2 Connecting Lab Instruments -- 9.4.3 Measurement Set‐Up Example.
|
505 |
8 |
|
|a 9.5 ΣΔM Design Examples and Case Studies.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
650 |
|
0 |
|a Metal oxide semiconductors, Complementary-Design and construction.
|
650 |
|
0 |
|a Analog-to-digital converters-Design and construction.
|
655 |
|
4 |
|a Electronic books.
|
776 |
0 |
8 |
|i Print version:
|a de la Rosa, José M.
|t Sigma-Delta Converters: Practical Design Guide
|d Newark : John Wiley & Sons, Incorporated,c2018
|z 9781119275787
|
797 |
2 |
|
|a ProQuest (Firm)
|
830 |
|
0 |
|a IEEE Press Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/well/detail.action?docID=5502855
|z Click to View
|